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Abstract In this paper, we apply a simple numerical method for evaluating a correla-
tion function of atomic density fluctuation under Gaussian random potentials. Instead
of using the 6-points kernel, averaged over disorders, we use the numerical shooting
method for solving the Schrödinger equation of this quantum system and directly cal-
culate the correlation function from these solutions. Since our approach does not use
complicated formulas, it requires much less computational effort when compared to
Green function techniques. Finally, we show results of calculations for setting each of
parameters of Gaussian random potentials.

Keywords Correlation function · Gaussian random potentials · Schrödinger
equation · Atomic density fluctuation · Numerical shooting method

1 Introduction

Most problems encountered in quantum mechanics cannot be solved exactly. Exact
solutions of Schrödinger equation exist only for a few idealized systems. To solve
general problems, one has to approximation methods. A variety of such methods have
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been developed, and each method has its own area of applicability. Examples are, e.g.
Wentzel–Kramers–Brillouin [1], perturbation [2], the quasi-linearization method [3],
the variational method [4], function analysis [5,6], the eigenvalue moment method
[7], the analytical transfer matrix method [8–10] and numerical shooting method [22].
Grobe et al. [12] proposed a criterion to determine the numerical degree of global
correlation function of a multipartite quantum system. He had applied this method
to several situations, including electron-atom scattering and strong-field photoioniza-
tion. Lye et al. [13] discussed the effect of a weak random potential, indicated by
stripes in the expanded density profile of the Bose–Einstein condensate and damped
dipole oscillations. In 2008 Shapiro and Henseler [14] defined the disorder-induced
intensity–intensity correlation function, Cn(r, r′) = |ψ∗

n (r)ψn(r′)|2 for the Bose–
Einstein Condensate for Fermi gas. Cherroret and Skipetrov [15] showed decay of the

average atomic density (n(r, t) = |ψ(r, t)|2) as a function of time. The density reaches
a maximum at the arrival time tarrival � 2z2/Dμ, where Dμ is the diffusion coeffi-
cient in random potentials. Now, a few works had concerned the expansion of Bose–
Einstein Condensate in three-dimensional potentials and evaluate correlation func-
tion. Cherroret and Skipetrov [16] had showed the typical diffusion coefficient of the
Bose–Einstein Condensate in a three-dimensional random potential. Shapiro et al. [17]
considered diffusion of a cold-atomic Fermi gas in the presence of a random optical
speckle potential. Pezze et al. [18] numerically studied the dynamics regimes of classi-
cal transport of cold atoms gases in a two-dimensional anisotropic disorder potential.

In this paper, we consider a particle moving in the harmonics potential, perturbed by
Gaussian random potentials. To study a problem of stationary states, we focus on the
numerical shooting method for evaluating wave functions and the time-independent
correlation functions. The scheme of the paper is as follows. In Sect. 2 we write the
basic time-independent Schrödinger equation in the form,

ψ(i+1) = 2ψ(i) − ψ(i−1) − (Δξ)2(ε − ξ2 − UG(ξ))ψ
(i); i = 2, 3, 4, . . . ,

where UG(ξ) is the summation of Gaussian random potentials. In Sect. 3 we show
the logical ideas of program for evaluating energy eigenvalues, wave-functions and
the correlation function of the atomic density fluctuation via the numerical shooting
method (Asaithambi, Ledoux and Van Daele, Boonchui and Hutem [19–22]). Finally
we summarize our results in conclusion, Sect. 4.

2 Finite difference formula for time-independent Schrödinger equation

We consider a particle of mass μ moving in an one-dimensional harmonic potential
1
2μω

2x2 and the summation of Gaussian random potentials VG(x),

VG(x) =
R.D.∑

i=1

Ae−(x−ki )
2/�2

, (1)

where A is a strength of the scattering potential and 2� is a standard deviation.
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Fig. 1 The total potential,
1
2μω

2x2 + VG (x) is plotted
when parameters of a Gaussian
random are determined as
A = 5, a = 50 (� = 1/

√
a).

R.D = 20 is a number of
Gaussian random potentials.
Now the anti-symmetry
harmonics potential is obtained

Gaussian potential represents a noise or disorder, which occurs at the given region
of the harmonic oscillator. A random variable ki is a fixed scattering centre of Gaussian
potential. The statistics of random variables ki is chosen to be the completely random.
The time-independent Schrödinger equation of this system is given by

− h̄2

2μ

d2ψ(x)

dx2 +
(

1

2
μω2x2 + VG(x)

)
ψ(x) = Eψ(x). (2)

For an example, the total potential is showed in Fig. 1.
An average of physical quantity O(x) on the present of the random potentials is

defined

O(x) =
∫

dx O(x)|ψm(x; k1, k2, . . . , kN )|2. (3)

The density fluctuation δn(x) and the correlation function of density fluctuation C(s)
are respectively defined as

δn(x) = n(x)− n( f )(x) and C(s) =
∫

dx δn(x)δn(x − s), (4)

where s = |x − x ′| is a distance between two points x and x , n(x) = |ψm(x)|2
is an atomic density of the quantum state m for the harmonics oscillator potential,
perturbed by the Gaussian random potentials and n( f )(x) = |ψ( f )

m (x)|2 is that for the
free harmonics oscillator potential, respectively.

For starting the calculation, we solve the wave functions, satisfied Eq. (2) by using
the numerical shooting method. It is convenient to simplify the arithmetic involved in
the shooting solution. We define a dimensionless variable ξ :

ξ ≡
√
μω

h̄
x, ξ2 = μω

h̄
x2. (5)

With this definition, the position variable x is replaced with the dimensionless variable
ξ and the second-derivative term can be written as
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d2

dξ2 = h̄

μω

d2

dx2 . (6)

Multiplying the Schrödinger equation Eq. (2) by (−2/ωh̄),

h̄

μω

d2ψ(x)

dx2 − μω

h̄
x2ψ(x)− 2VG(x)

h̄ω
ψ(x)+ 2E

h̄ω
ψ(x) = 0, (7)

and substituting x in terms of ξ and setting ε = 2E
h̄ω , UG(ξ) = 2

h̄ωVG(x), we can obtain
the Schrödinger equation in terms of ξ as

d2ψ(ξ)

dξ2 +
(
ε − ξ2 − UG(ξ)

)
ψ(ξ) = 0. (8)

Also, the total potential in terms of the new variable is given in the form,

V (ξ) = ξ2 + UG(ξ). (9)

For the finite difference method, Eq. (7) is rewritten in the form of many small segments
Δξ in the ξ domain length. The second-derivative of the first term in Eq. (7) can be
approximated in the finite difference form [20,21] as

d2ψ(ξ)

dξ2 ≈ ψ(i+1) + ψ(i−1) − 2ψ(i)

(Δξ)2
. (10)

We can obtain the Schrödinger equation in the form of finite difference by substituting
Eq. (10) into Eq. (7). Thus we have

ψ(i+1) = 2ψ(i) − ψ(i−1) − (Δξ)2(ε − ξ2 − UG(ξ))ψ
(i); i = 2, 3, 4, . . . , (11)

where Δξ = ξi+1 − ξi .

3 Numerical shooting method and results

We assign the new variable for calculating the ground-state and the excited-state energy
eigenvalues, the wave functions and the time-independent correlation functions of the
atomic density fluctuation, respectively. Let us start with initial values,

1. ξmin is the starting position in the analysis range.
2. ξmax is the end position in the analysis range.
3. A set of random variables {ki } is generated in the range ξmin to ξmax .
4. ξ is any position in the analysis range.
5. nn is a number of very small bars in the analysis range.
6. �ξ is the length of very small bars,

� ξ = ξmax − ξmin

nn
. (12)
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(a) (b)

(c) (d)

(e) (f)

Fig. 2 Plot of wave functions at ground state by varying the random numbers (R.D.) for parameters of the
Gaussian random potentials A = 5 and a = 300(� = 1/

√
a)

For the beginning of the numerical shooting method, we need to input parameters
ξmin(ξmax ), and Eq. (11) into mathematica program. Next, two initial wave functions
are determinate by following two initial conditions as (i) ψ(1) = 0 is the fixed position
and (i i) dψ

dξ = 1 is the slope of position ξ1 and ξ2.

So we have

dψ

dξ
≈ ψ(2) − ψ(1)

�ξ ⇒ ψ(2) ≈ �ξ. (13)
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(a) (b)

(c) (d)

(e) (e)

Fig. 3 Schematic diagram for behavior of the time-independent the correlation function of density fluctu-
ations for the ground state energy with vary number of random, 30, 40, 60, 80, 100 and 120

By inputting ψ(1) and ψ(2) as two initial values for calculation, we can find ψ(3) from
Eq. (11), which contains the effects of Gaussian random potentials. In the same way,
we can find ψ(4) by substituting ψ(2) and ψ(3) in the equation. Keeping this way, we
obtain any ψ(n) (see fig. 2 in the references [22]).

– When |ψ(i+1)| approaches to a desired value, accuracy of calculation, the next
task of wave function in Eq. (13) is calculated. For example, we would like to stop
the calculation and to accept the final energy when |ψ(i+1)| ≤ 10−6.

– Plot the wave-function by the graph related to i .
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(a) (b)

(c) (d)

(e) (f)

Fig. 4 We show the effect of width size (� = 1/
√

a on the wave-function for setting parameters of Gaussian
random potential to be a = 300 and a = 500. Figure (a)− (b) are plot of the ground-state wave-function.
Figure (c) − (d) are plot of the first excite-state wave-function. Figure (e) − (f) are plot of the second
excite-state wave-function

– Plot the wave-functions, and the correlation function C(s) by the graph related to
i .

– Plot the average of the correlation function C(s) over the random variables ki by
the graph related to i .

In the present of random potentials, we assume that statistics of the random variables
ki is chosen to be the completely random. Following ref. [15], an average correlation
function of the atomic density fluctuation ˜C(s) over random variables ki , is defined as
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(a) (b)

(c) (d)

(e) (f)

Fig. 5 We show the effect of width size � = 1/
√

a on the time-independent correlation function for setting
parameters of Gaussian random potential to be a = 300 and a = 500. Figure (a) − (b) are plot of the
time-independent correlation function for the ground-state wave-function. Figure (c) − (d) and (e) − (f)
are plot the time-independent correlation function for the first and the second excite-state wave-function,
respectively

˜C(s) = 1

N R

N R∑

j=1

∫
dx δn( j)(x)δn( j)(x − s) (14)

when j and N R are an index and a number of the set of random variables {ki },
respectively.
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Fig. 6 Plot the average
correlation function of the
atomic density fluctuation ˜C(s)
for the ground-state
wave-function with NR = 20,
R.D = 40

For examples, we show the solutions of Schroödinger equation for the one-
dimensional harmonic system induced random potentials by using the numerical shoot-
ing method. The ground state wave function n = 0 and the correlation function for
each parameters are showed as Figs. 2 and 3, respectively. The correlation functions for
these cases oscillate with the amplitude gradually decreasing to zero. It is called one-
half of critical damping case. Negative correlations are obtained in our calculations.
These results were predicted to exist in waves reflection from a thick disordered slab
[23]. Form Fig. 3, we show that magnitude of correlation functions increase from 0.002
to 0.6 with increasing the number of individual scattering potentials (R.D). In Figs. 4
and 5, we consider an effect of width size of a Gaussian random potential, � on the wave
functions and the correlation functions for (i) ground state n = 0, (ii) first excitation
n = 1 and (iii) second excitation n = 2, respectively. Results of calculation show that
the magnitude of correlation functions depend on the width size of Gaussian random
potential.

Finally, we show the average correlation function ˜C(s) for the ground-state wave-
function in Fig. 6. This average has characteristic curve as one-half of critical damp-
ing case. Positive and negative correlations occur at short distances (small s) and long
distances (large s) between points x and x ′, respectively. The positive correlation coef-
ficients mean that the value of the density fluctuation at point x increases, the value of
the other at point x ′ increases; as one decreases the other decreases. Negative corre-
lation coefficients indicate that the density fluctuation increases, the other decreases,
and vice-versa. These results are effects of the anti-symmetry harmonics potential,
induced by the Gaussian random potentials.

4 Conclusion

We illustrate the numerical method for solving the one-dimensional harmonic oscilla-
tor, perturbed from a set of the Gaussian random potentials. Our calculations, we can
get the time-independent correlation function corresponding with the Green functions
techniques [15]. However the numerical shooting method does not use complicated
formulas, it requires much less computational effort when compared to the Green func-
tions techniques. Generally regarded as one of the most efficient methods, the numer-
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ical shooting method gives very accurate results because it integrates Schroödinger
equation directly, though in the numerical sense.
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